

DCSM500LFBH High-Precision Current Transducer

DCSM500LFBH Current Transducer using the principle of fluxgate.It can measure DC,AC,pulse,and various irregular wave form currents under electrical isolation conditions.It has ultra-high accuracy and linearity features,ultra-high sensitivity and resolution,as well as extremely low offset current and temperature drift.It is widely used in instruments and meters,medical equipment,measurement and calibration,laboratories,high-precision power supplies,new energy vehicles.

Electrical characteristics			
	Туре	DCSM500LFBH	
I _{PN}	Primary nominal input current	±500	A(DC)
I _{PNAC}	Primary nominal RMS current	353	A(AC)
I _P	Measuring range of primary current	0~±900	A
I _{OUT}	Secondary nominal output current	±250	mA
K _N	Conversion ratio	1:2000	
Rм	Measuring resistance	with±15V @±500Amax 0(min) 34(max)	Ω
		with±15V @±900Amax 0(min) 10(max)	Ω
Vc	Supply voltage	±15(±5%)	V
Ic	Current consumption	15+l _P /K _N	mA
VD	Insulation voltage	AC/50Hz/1min 5	kV
Х	Accuracy	@T _A =25°C 100	ppm
εL	Linearity	@I _P =0-±I _{PN} 20	ppm
lo	Zero offset current	@T _A =25°C 3	μA
Tc	Offset temperature coefficient	@I _{PN} =0 T _A =-40~+85°C 5	μA
TR	Response time	@100A/µS, 10%-90% ≤1	μs
f	Frequency bandwidth	@-3dB DC~150	kHz
di/dt	di/dt accurately followed	>100	A/µs
T _A	Ambient operating temperature	-40~+85	°C
Ts	Ambient storage temperature	-40~+125	°C
Rs	Secondary coil resistance	@T _A =85°C 16	Ω
m	Mass	253	g

- Operating Status Instructions
- 1, Normal Status: The green indicator is "on" under the normal working conditions.
- 2, Fault Status: The green light is "off" that indicates the sensor is in fault mode.
- Trouble-shooting:
- a) When the green light is off, the power supply should be checked as the first step;

b) If the power supply is normal, then the primary current is over the specified measurement range and the sensors will be in overload mode. In this mode, the sensors will be working in non-zero flux status, the secondary and primary currents are not in proportional. Once the primary current return to the specified measurement range, the sensors well be running normally.

 \bullet The temperature of the original measuring cable or busbars should not exceed 100 $^\circ\!{\rm C}.$