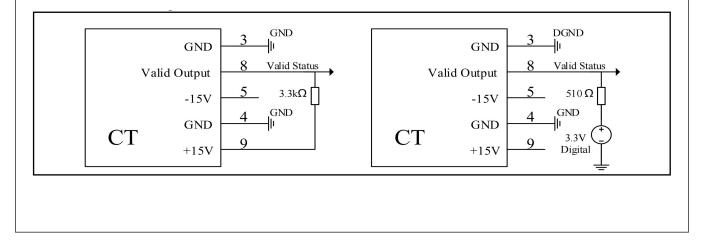

DCSM500LFBH-DB9 High-Precision Current Transducer

DCSM500LFBH-DB9 Current Transducer using the principle of fluxgate.It can measure DC,AC,pulse,and various irregular wave form currents under electrical isolation conditions.It has ultra-high accuracy and linearity features,ultra-high sensitivity and resolution,as well as extremely low offset current and temperature drift.It is widely used in instruments and meters,medical equipment,measurement and calibration,laboratories,high-precision power supplies,new energy vehicles.


Electri	cal characteristics		
	Туре	DCSM500LFBH-DB9	
I _{PN}	Primary nominal input current	±500	A(DC)
IPNAC	Primary nominal RMS current	353	A(AC)
IР	Measuring range of primary current	0~±900	А
I _{OUT}	Secondary nominal output current	±250	mA
K _N	Conversion ratio	1:2000	
Rм	Measuring resistance	with±15V @±500Amax 0(min) 34(max)	Ω
		with±15V @±900Amax 0(min) 10(max)	Ω
Vc	Supply voltage	±15(±5%)	V
Ic	Current consumption	15+I _P /K _N	mA
VD	Insulation voltage	AC/50Hz/1min 5	kV
Х	Accuracy	@T _A =25°C 100	ppm
٤L	Linearity	@lp=0-±lpN 20	ppm
lo	Zero offset current	@T _A =25°C 3	μA
Tc	Offset temperature coefficient	@I _{PN} =0 T _A =-40~+85℃ 5	μA
T _R	Response time	@100A/µS, 10%-90% ≤1	μs
f	Frequency bandwidth	@-3dB DC~150	kHz
di/dt	di/dt accurately followed	>100	A/µs
T _A	Ambient operating temperature	-40~+85	°C
Ts	Ambient storage temperature	-40~+125	°C
Rs	Secondary coil resistance	@T _A =85°C 16	Ω
m	Mass	253	g

Status Port

The effective working status detection of the sensor is indicated by Pin3 and Pin8 of D-SUB-9(9 pins connector). As shown in the following figure, If the voltage on Pin8 is about 0.7V, the sensor is working normally. If it is 3.3V Digital or+15V, the secondary output is invalid.

Remarks

- Incorrect connection may lead to the damage of the sensor.
- I_{OUT} is positive when the I_P flows in the direction of the arrow.
- Operating Status Instructions
- 1, Normal Status: The green indicator is "on" under the normal working conditions.
- 2, Fault Status: The green light is "off" that indicates the sensor is in fault mode.
- Trouble-shooting:
- a) When the green light is off, the power supply should be checked as the first step;

b) If the power supply is normal, then the primary current is over the specified measurement range and the sensors will be in overload mode. In this mode, the sensors will be working in non-zero flux status, the secondary and primary currents are not in proportional. Once the primary current return to the specified measurement range, the sensors well be running normally.

• The temperature of the original measuring cable or busbars should not exceed 100 °C.