CSM3000LTF # High-precision Hall closed-loop current se Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mixed current. | Elect | rical characteristics | | | | | | | | |------------------|---|---|------|-----------------------|------|-----------------------|------|----------------------| | | Туре | CSM1000LTF | | CSM2000LTF | | CSM3000LTF | | | | I _{PN} | Primary nominal input current | 1000 | | 2000 | | 3000 | | Α | | I _P | Measuring range of primary current(DC) | 0∼±1500 | | 0∼±3000 | | 0∼±4500 | | Α | | I _{out} | Secondary nominal output current | 200 | | 400 | | 600 | | mA | | K _N | Conversion ratio | 1:5000 | | | | | | | | R _M | Measuring resistance (V _C =±15V) | I _P =±1000 | 0-52 | I _P =±2000 | 0-16 | I _P =±3000 | 0-5 | Ω | | | (V _C =±15V) | I _P =±1500 | 0-28 | I _P =±3000 | 0-5 | I _P =±4500 | | Ω | | | (V _C =±24V) | I _P =±1000 | 0-97 | I _P =±2000 | 0-39 | I _P =±3000 | 0-20 | Ω | | | (V _C =±24V) | I _P =±1500 | 0-58 | I _P =±3000 | 0-20 | I _P =±4500 | 0-7 | Ω | | V _c | Supply voltage | ±15~±24(±5%) | | | | | | V | | I _c | Current consumption | V _C =±24V 28+I _{OUT} | | | | | mA | | | V _d | Insulation voltage | AC/50Hz/1min 6 | | | | | kV | | | Х | Accuracy | T _A =25℃ ±0.3 | | | | | % | | | ٤ ل | Linearity | <0.1 | | | | | | %F | | I _o | Zero offset current | T _A =25℃ <±0.2 | | | | | | mA | | I _{ot} | Thermal drift of I ₀ | I _P =0 T _A =-40∼+85℃ <±0.01 | | | | | | mA/ | | Tr | Response time | 90%I _{PN} <1 | | | | | | μs | | di/ | dit accurately followed | >100 | | | | | | A/µ | | f | Frequency bandwidth(-1dB) | DC~100 | | | | | | kHz | | T _A | Ambient operating temperature | -40~+85 | | | | | | $^{\circ}\mathbb{C}$ | | Ts | Ambient storage temperature | -40~+125 | | | | | | $^{\circ}$ | | R_s | Secondary coil resistance(T _A =25°C) | 18 | | | | | | Ω | | m | Mass | 3400 | | | | | | g | | | Standard | Q/320115QHKJ01-2016 | | | | | | | ## Dimensions of drawing (mm) ### Connection #### Remarks - 1.Incorrect connection may lead to the damage of the sensor. I_{OUT} is positive when the I_{P} flows in the direction of the arrow. - 2.Dynamic performance (di/dt and response time) are best with a primary bar in the center of the through-hole.