

Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mixed current.

Electrical characteristics			
	Туре	CSM1000LFA	
I _{PN}	Primary nominal input current	1000	Α
Ι _Ρ	Measuring range of primary current	0~±2800(V _C =±24V R _M =2Ω)	Α
I _{OUT}	Secondary nominal output current	200±0.3%	mA
K _N	Conversion ratio	1:5000	Т
R _M	Measuring resistance	with±15V @±1000Amax 0(min) 35(max)	Ω
		with±15V @±1600Amax 0(min) 4.5(max)	Ω
		with±24V @±1000Amax 0(min) 80(max)	Ω
		with±24V @±2800Amax 0(min) 2.0(max)	Ω
Vc	Supply voltage	±15~±24(±5%)	V
lc	Current consumption	20+I _P /K _N	mA
V_{D}	Insulation voltage	AC/50Hz/1min 6	kV
٤L	Linearity	@I _P =0-±I _{PN} ±0.1	%FS
I ₀	Zero offset current	@T _A =25°C <±0.2	mA
Iot	Thermal drift of I ₀	@I _{PN} =0 T _A =-40∼+85℃ <±0.5	mA
T_{R}	Response time	@100A/µS, 10%-90% ≤1	μs
f	Frequency bandwidth	@-3dB DC~200	kHz
di/dt	di/dt accurately followed	>100	A/µs
T _A	Ambient operating temperature	-40~+85	°C
Ts	Ambient storage temperature	-40~+125	°C
Rs	Secondary coil resistance	@T _A =25°C 36	Ω
m	Mass	505	g
	Standard	Q/320115QHKJ01-2016	

Dimensions of drawing (mm)

Remarks

Incorrect connection may lead to the damage of the sensor. I_{OUT} is positive when the I_P flows in the direction of the arrow.
Dynamic performance (di/dt and response time) are best with a primary bar in the center of the through-hole.
The primary conductor should be≤120°C.